Trading Frequency and Asset Pricing: Evidence from a New Price Impact Ratio

Chris Florackis, Andros Gregoriou and Alex Kostakis

6th May 2010

- Introduction: Liquidity and Existing measures
- Amihud's RtoV measure: Definition and shortcomings
- A New Price Impact Ratio
- Asset Pricing: Evidence from the UK market
- Conclusions and Future Research

- The recent global financial crisis highlighted the importance of macro- and micro-liquidity in financial markets
- Market analysts, traders and the financial press have been focussing on liquidity as a main driver of asset prices
- Central banks and regulators have been also monitoring liquidity for the sake of financial stability

BoE Financial Stability Report (October 2008)

6 May 2010

- Liquidity has been long regarded as an important feature in market micro-structure studies
- But few asset pricing studies (and models) had explicitly recognized its role
- Notable exceptions are the studies of Yakov Amihud and Haim Mendelson (already from 1981)
- Now, liquidity has become a dominant issue in academic finance literature too

Measuring Liquidity

- This increasing interest leads to the necessity of measuring liquidity
- But this has been a difficult task, because:
 - *Liquidity is an elusive concept*
 - Liquidity has several dimensions (trading quantity, trading speed, trading cost and price impact)
- Result: Lots of measures proposed, each with attractive features and shortcomings

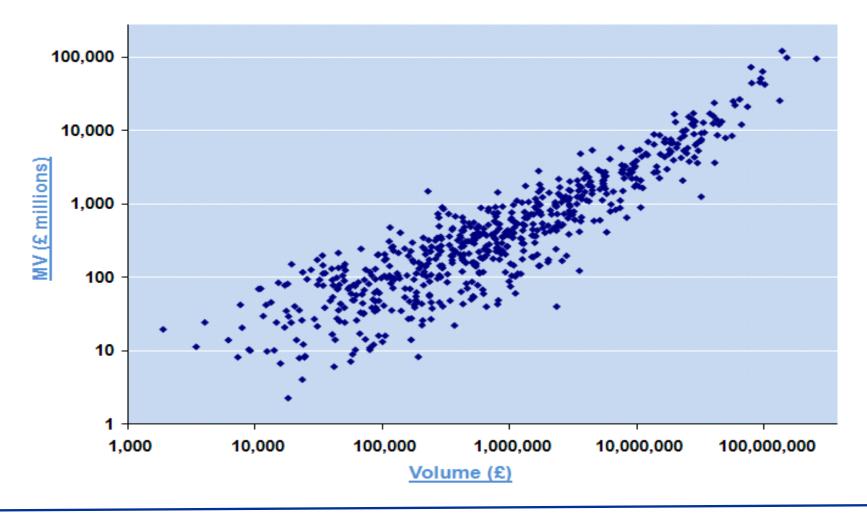
Plethora of Measures: Blessing or Curse?

- Bid-ask spread (Amihud and Mendelson, 1986a)
- Relative spread (Amihud and Mendelson, 1986b)
- Effective spread (Lee, 1993 and Heflin and Shaw, 2000)
- Amortized spread (Chalmers and Kadlec, 1998)
- Trading volume (Brennan et al., 1998)
- Turnover rate (Datar, Naik and Radcliffe, 1998)
- Number of zero-return days (Bekaert et al., 2005)
- Price sensitivity to order flow (Pastor and Stambaugh, 2003)

Plethora of Measures: Blessing or Curse?

- No measure can perfectly capture all dimensions of liquidity
- Some studies (and the Bank of England) try to combine them into one indicator (e.g. PCA)
- A relatively new measure has been the most popular among recent studies
- Amihud's (2002) price impact ratio (RtoV):

$$RtoV_{it} = \frac{1}{D_{it}} \sum_{d=1}^{D_{it}} \frac{\mid R_{itd} \mid}{V_{itd}}$$


Why Amihud's Price Impact Ratio

- Intuitive interpretation: It directly measures the impact of a pound of trading volume on stock's return
- Kerry (2008): Proxy for market depth and resiliency
- Interpreted as a measure of disagreement among investors
- "Price discovery" component: Trading activity motivated by information/expectations regarding future price movements
- Good empirical proxy for the theoretically fine concept of Kyle's (1985) lambda (Hasbrouck, 2005)
- Easy to calculate for long periods due to data availability

Shortcomings

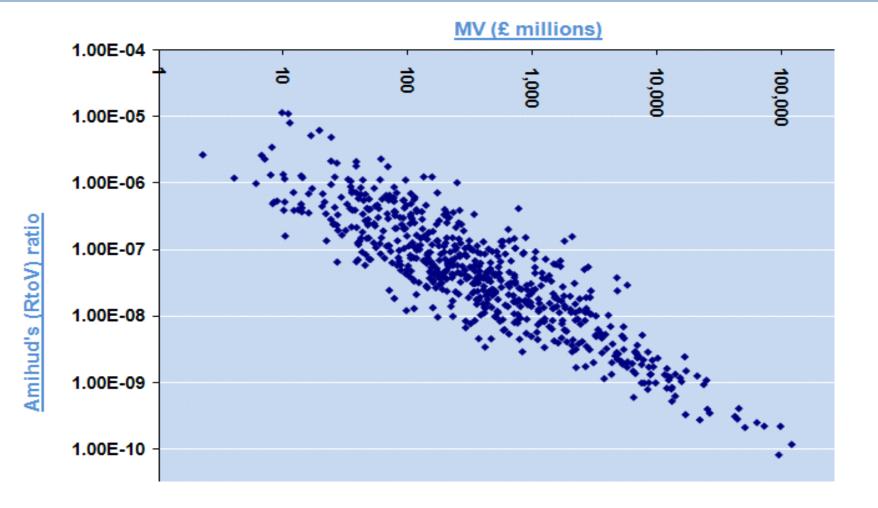

- Inherent size bias: Trading volume in monetary terms is by no means comparable across stocks with different market values
 - Small size stocks are forced to exhibit high RtoV values
 - \rightarrow automatically characterized as "illiquid"
 - RtoV inappropriate for cross-sectional asset pricing studies
- Neglects investors' stock holding horizons
 - Uninformative for the frequency at which this cost is incurred
 - Implicitly assumes that trading frequency is similar across stocks
- Inherent price level bias
 - Trading volume in monetary terms exhibits an upward time trend
 - Unless deflated, RtoV exhibits a downward time trend
 → stocks become automatically more liquid through time
 - BoE and Kerry (2008) divide through aggregate MV to remove bias

Illustration of Size Bias (MV vs. Volume)


6 May 2010

Illustration of Size Bias (Amihud's Ratio vs. MV)

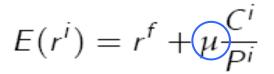

6 May 2010

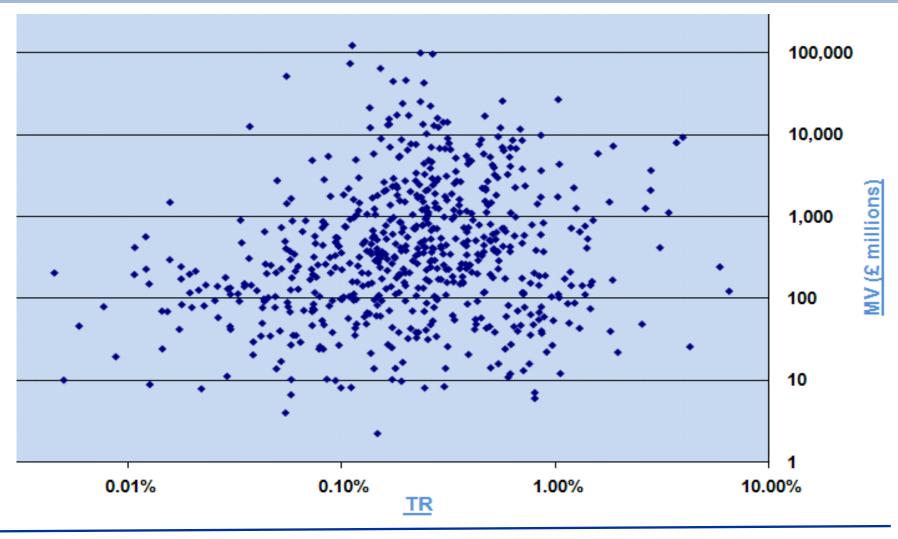
Illustration of Price Level Bias (BP plc.)

The Importance of Trading Frequency

 The fundamental theorem of liquidity asset pricing (Amihud and Mendelson, 1986a) states that for a risk-neutral investor with trading intensity μ, the required return on security i is given by:

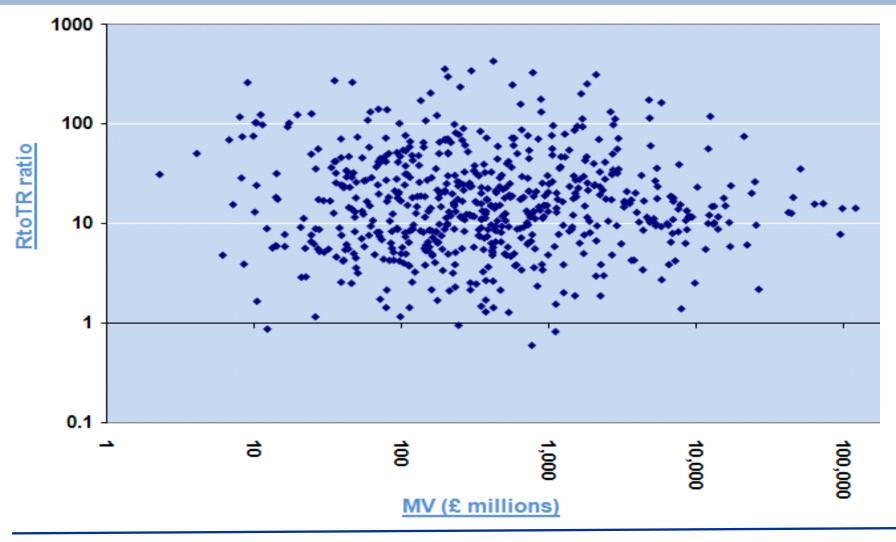
Cⁱ stands for the illiquidity cost of asset *i* and *Pⁱ* for its price

 Excess expected returns depend not only on the transaction cost but also on the frequency according to which this cost is incurred

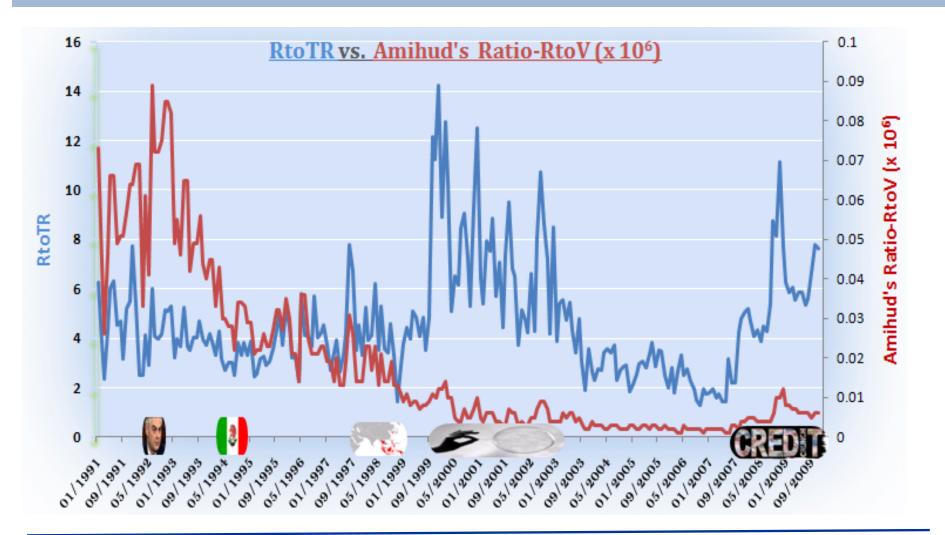

- Trading costs have been dramatically reduced over the last 20 years (French, 2008, AFA Presidential Address)
- Transaction costs almost negligible due to improved microstructure mechanisms and electronic platforms
- Turnover rate in LSE has increased from 40.5% in 1995 to 152.7% in 2008 (World Federation of Exchanges)
- Dramatic reduction in holding horizons by institutional investors

 We propose a new price impact ratio, RtoTR, that replaces trading volume with turnover ratio in Amihud's ratio

$$RtoTR_{it} = \frac{1}{D_{it}} \sum_{d=1}^{D_{it}} \frac{\mid R_{itd} \mid}{TR_{itd}}$$


- Inherits the intuitive price impact interpretation of RtoV
- **Free of size bias** → appropriate for cross-sectional asset pricing
- Free of price level bias, better than dividing by aggregate MV
- Captures **compound effect** of trading frequency + transaction costs
- Easy to calculate for long horizons and international stock markets

Free of Size Bias (MV vs. TR)


6 May 2010

Free of Size Bias (RtoTR vs. MV)

6 May 2010

Free of Price Level Bias (BP plc.)

6 May 2010

Compound effect (BP plc.)

Bank of England Presentation

6 May 2010

The Dataset

- Common stocks listed on LSE, no survivorship bias
- Excluding investment trusts and ADRs
- Period: January 1991- December 2008
- Daily data on bid-ask spread, turnover ratio, volume and returns
- Source: Thomson Datastream
- Sort stocks according to RtoV and RtoTR + construct decile portfolios
- Calculate post-ranking EW and VW portfolio returns, monthly rebalancing

Performance and Characteristics of RtoV-sorted portfolios

RtoV	Portfolios	

	P1	P2	P9	P10	P10-P1	t-test
EW returns (% p.a.)	0.852	0.260	7.344	14.242	13.390	3.093
VW returns (% p.a.)	-0.735	-0.564	0.665	5.479	6.215	1.517
RtoV ratio	5.97E-04	2.19E-03	5.09E-01	2.50	2.50	15.015
MV(£m)	12005.541	2216.778	101.645	64.412	-11941.13	-47.977
Price-to-Book	3.414	3.300	2.813	2.542	-0.872	-14.784
CAPM Beta	1.005	1.095	1.021	1.011	0.006	0.290

Performance and Characteristics of RtoTR-sorted portfolios

	P1	P2	P9	P10	P1-P10	t-test
EW returns (% p.a.)	13.902	6.357	2.556	-1.493	15.395	5.156
VW returns (% p.a.)	6.551	1.842	-7.814	-5.918	12.469	3.896
RtoTR ratio	1.441	2.899	35.425	120.436	-118.996	-42.730
MV(£m)	2719.871	3499.827	386.894	253.512	2466.359	31.029
Price-to-Book	3.660	3.315	2.956	2.875	0.785	9.966
CAPM Beta	0.952	1.023	1.034	1.073	-0.122	-6.986

RtoTR Portfolios

Findings

- Highest RtoV portfolios yield the highest post-ranking returns
- Confirm the size gradient in RtoV portfolios
- Reverse order for RtoTR-sorted portfolios: Lowest RtoTR portfolios yield the highest post-ranking returns
- Low RtoTR: Small price impact but very high Turnover ratio

\rightarrow <u>Conclusion</u>:

- Trading frequency dominates the trading cost effect
- Even low transaction costs may lead to high premia if they are very frequently incurred

RtoV Portfolios

	P1	P2	P9	P10	P10-P1	Chi-sq.
CAPM alpha (% p.a.)	0.90	1.37	2.60	7.49	6.58	19.29
	(1.27)	(0.85)	(0.84)	(2.10)***	(1.64)	(0.037)
Fama-French alpha (% p.a.)	1.49	0.18	0.58	5.33	(3.83	20.12
	(3.19)***	(0.15)	(0.20)	(1.62)	(1.13)	(0.028)
Carhart alpha (% p.a.)	1.54 (3.19)***	0.05 (0.04)	1.99 (0.65)	5.38 (1.49)	3.84 (1.02)	17.82 (0.058)

Alphas of RtoTR-sorted Portfolios

RtoTR Portfolios

	P1	P2	P9	P10	P1-P10	Chi-sq.
CAPM alpha (% p.a.)	8.30	3.48	-5.60	-3.89	12.20	42.23
	(4.46)***	(2.31)**	(-1.44)	(-1.32)	(3.65)***	(0.00)
Fama-French alpha (% p.a.)	7.79	3.10	-7.74	-5.78	13.58	42.30
	(4.39)***	(2.03)*	(-2.45)**	(-2.25)**	(4.22)***	(0.00)
Carhart alpha (% p.a.)	6.53	3.07	-6.85	-6.85	13.38	33.22
	(3.93)***	(1.91)*	(-2.16)**	(-2.26)**	(3.77)***	(0.00)

RtoV alphas disappear once a size factor (a la Fama-French) is included in the asset pricing model →

Confirms the Size-RtoV tautology

■ RtoTR alphas persist in the presence of size, value and momentum factors →

This characteristic is genuinely priced in the UK market

Cross-sectional asset pricing tests

- Augment common asset pricing models (CAPM, Fama-French and Carhart) with a Price Impact factor
- Price Impact factor= P1-P10 of RtoTR-sorted portfolios
- Examine if this factor is priced in the cross-section of RtoTR portfolios
- Fama-McBeth 2-step methodology
- Shanken-corrected standard errors

Cross Sectional Asset Pricing Tests

	λ_0	λ_{MKT}	λ_{SMB}	λ_{HML}	λ _{MOM}	λ_{PI}	Adj. R ²	ΔR^2
1.CAPM&PI	0.99 (1.15) [1.08]	-1.24 (-1.24) [-1.18]	-	-	-	0.81 (2.34)** [2.30]**	0.14	<mark>0.06</mark>
2. Fama-French&PI	2.02 (1.63) [1.33]	-2.41 (-1.70)* [-1.40]	0.21 (1.24) [1.06]	-0.32 (-0.44) [-0.36]	-	0.97 (2.96)*** [2.82]***	0.20	0.05
3. Carhart&PI	1.74 (1.19) [0.96]	-2.16 (-1.32) [-1.07]	0.29 (1.02) [0.84]	-0.59 (-0.76) [-0.62]	0.25 (0.68) [0.56]	0.94 (2.94)*** [2.82]***	0.25	0.05

Momentum and Size alphas

Momentum (Winner-Loser Deciles)

1. CAPM alpha	22.78 (2.78)***
2. CAPM&PI alpha	16.71 (2.10)**
3. Fama-French alpha	25.12 (3.73)***
4. Fama-French&PI alpha	19.81 (2.96)***
5. Carhart alpha	9.44 (1.97)**
6. Carhart&PI alpha	4.67 (0.98)

- PI-augmented models do not capture the size "anomaly"
- Momentum alphas are considerably reduced in PI-augmented models (but do not disappear)
- Momentum may be related to the price impact effect
- Similar finding in Pastor and Stambaugh (2003) that use order flow sensitivity as liquidity proxy

Conclusions and Future Research

- The suggested price impact ratio is not only a methodological improvement to remove the size bias in RtoV
- It also captures the trading frequency effect that has become a dominant feature in financial markets
- Trading frequency dominates the transaction cost effect in determining the corresponding premium
- Utilize RtoTR for bond markets
- Examine the relationship between momentum and RtoTR